Illiquidity Component of Credit Risk

Stephen Morris and Hyun Song Shin

Princeton University and Bank of International Settlements
NBER and NYU conference on Multiple Equilibria and
Financial Crises, February 2016
An Old Distinction

- Insolvency versus Illiquidity problems
Solvency View

- Banks get in trouble when borrowers default
Solvency View

- Banks get in trouble when borrowers default
- Focus on asset side of balance sheet
Solvency View

- Banks get in trouble when borrowers default
- Focus on asset side of balance sheet
 - Problem is shortfall in asset values
Solvency View

- Banks get in trouble when borrowers default
- Focus on asset side of balance sheet
 - Problem is shortfall in asset values
- Classical Solution:
Banks get in trouble when borrowers default
Focus on asset side of balance sheet
 Problem is shortfall in asset values
Classical Solution:
 Capital is buffer to protect creditors
Solvency View

- Banks get in trouble when borrowers default
- Focus on asset side of balance sheet
 - Problem is shortfall in asset values
- Classical Solution:
 - Capital is buffer to protect creditors
 - Basel-style approach to bank capital regulation
Liquidity View

- Banks get in trouble when lenders withdraw or (equivalently) fail to rollover deposits / short term lending
Liquidity View

- Banks get in trouble when lenders withdraw or (equivalently) fail to rollover deposits / short term lending
- Focus on liability side of balance sheet
Liquidity View

- Banks get in trouble when lenders withdraw or (equivalently) fail to rollover deposits / short term lending
- Focus on liability side of balance sheet
 - Problem is maturity mismatch, panic
Liquidity View

- Banks get in trouble when lenders withdraw or (equivalently) fail to rollover deposits / short term lending
- Focus on liability side of balance sheet
 - Problem is maturity mismatch, panic
- Classical Solutions:
Liquidity View

- Banks get in trouble when lenders withdraw or (equivalently) fail to rollover deposits / short term lending
- Focus on liability side of balance sheet
 - Problem is maturity mismatch, panic
- Classical Solutions:
 - Longer term funding / remove liquidity mismatch
Liquidity View

- Banks get in trouble when lenders withdraw or (equivalently) fail to rollover deposits / short term lending
- Focus on liability side of balance sheet
 - Problem is maturity mismatch, panic
- Classical Solutions:
 - Longer term funding / remove liquidity mismatch
 - Lender of Last Resort
Banks get in trouble when lenders withdraw or (equivalently) fail to rollover deposits / short term lending

Focus on liability side of balance sheet
- Problem is maturity mismatch, panic

Classical Solutions:
- Longer term funding / remove liquidity mismatch
- Lender of Last Resort
- Liquidity Regulation: assets that are more easily liquidated
A Classical Statement of the Liquidity View

Christopher Cox, (then) SEC chairman, on Bear Stearns in March 2008.

“[T]he fate of Bear Stearns was the result of a lack of confidence, not a lack of capital. When the tumult began last week, and at all times until its agreement to be acquired by JP Morgan Chase during the weekend, the firm had a capital cushion well above what is required to meet supervisory standards calculated using the Basel II standard.

Specifically, even at the time of its sale on Sunday, Bear Stearns’ capital, and its broker-dealers’ capital, exceeded supervisory standards. Counterparty withdrawals and credit denials, resulting in a loss of liquidity - not inadequate capital - caused Bear’s demise.”
A Classical Statement of the Liquidity View

Christopher Cox, (then) SEC chairman, on Bear Stearns in March 2008.

“[T]he fate of Bear Stearns was the result of a lack of confidence, not a lack of capital. When the tumult began last week, and at all times until its agreement to be acquired by JP Morgan Chase during the weekend, the firm had a capital cushion well above what is required to meet supervisory standards calculated using the Basel II standard.

Specifically, even at the time of its sale on Sunday, Bear Stearns’ capital, and its broker-dealers’ capital, exceeded supervisory standards. Counterparty withdrawals and credit denials, resulting in a loss of liquidity - not inadequate capital - caused Bear’s demise.”

Geitner, Bernanke and every central banker, finance minister and regulator in history?
Liquidity versus Solvency

- The Christopher Cox liquidity view is a little self-serving.
Liquidity versus Solvency

- The Christopher Cox liquidity view is a little self-serving
Liquidity versus Solvency

- The Christopher Cox liquidity view is a little self-serving but more importantly a little simplistic...
- Bear Stearns - and other institutions facing liquidity risk - always (or almost always) have solvency problems
Liquidity versus Solvency

- The Christopher Cox liquidity view is a little self-serving but more importantly a little simplistic...
- Bear Stearns - and other institutions facing liquidity risk - always (or almost always) have solvency problems
- Liquidity and solvency problems hard to disentangle in practice
Liquidity versus Solvency

- The Christopher Cox liquidity view is a little self-serving but more importantly a little simplistic...
- Bear Stearns - and other institutions facing liquidity risk - always (or almost always) have solvency problems
- Liquidity and solvency problems hard to disentangle in practice
 - Did the run hasten failure of an already insolvent bank?
Liquidity versus Solvency

- The Christopher Cox liquidity view is a little self-serving but more importantly a little simplistic...
- Bear Stearns - and other institutions facing liquidity risk - always (or almost always) have solvency problems
- Liquidity and solvency problems hard to disentangle in practice
 - Did the run hasten failure of an already insolvent bank?
 - Or, did the run scupper an otherwise sound bank?
Liquidity versus Solvency

- The Christopher Cox liquidity view is a little self-serving but more importantly a little simplistic...
- Bear Stearns - and other institutions facing liquidity risk - always (or almost always) have solvency problems
- Liquidity and solvency problems hard to disentangle in practice
 - Did the run hasten failure of an already insolvent bank?
 - Or, did the run scupper an otherwise sound bank?
- One policy response:
Liquidity versus Solvency

- The Christopher Cox liquidity view is a little self-serving but more importantly a little simplistic...
- Bear Stearns - and other institutions facing liquidity risk - always (or almost always) have solvency problems
- Liquidity and solvency problems hard to disentangle in practice
 - Did the run hasten failure of an already insolvent bank?
 - Or, did the run scupper an otherwise sound bank?
- One policy response:
 - given that solvency and liquidity problems are tightly entwined in practise, let’s focus on capital requirements and move on....
The (Nuanced) View of This Paper

- Yes, insolvency and illiquidity are tightly entwined in practise
The (Nuanced) View of This Paper

- Yes, insolvency and illiquidity are tightly entwined in practice.
- Nonetheless, it is feasible and insightful to distinguish them in theory and identify "the illiquidity component of credit risk".
The (Nuanced) View of This Paper

- Yes, insolvency and illiquidity are tightly entwined in practise.
- Nonetheless, it is feasible and insightful to distinguish them in theory and identify "the illiquidity component of credit risk."
- Yes, policies targeted at insolvency (e.g., increased capital requirements) are excellent at preventing runs.
The (Nuanced) View of This Paper

- Yes, insolvency and illiquidity are tightly entwined in practise
- Nonetheless, it is feasible and insightful to distinguish them in theory and identify "the illiquidity component of credit risk"
- Yes, policies targetted at insolvency (e.g., increased capital requirements) are excellent at preventing runs
- But other policies targetting illiquidity might also be effective in preventing runs IF the illiquidity component of credit risk is important
Theoretical Decomposition of Credit Risk

- Provides a theoretical accounting framework to decompose credit risk into:
 1. Insolvency Risk: probability that creditors would not get paid even in the absence of a run.
 2. Illiquidity Risk: probability that creditors do not get paid because of a run, when they would have been paid in the absence of a run.
Theoretical Decomposition of Credit Risk

- Provides a theoretical accounting framework to decompose credit risk into:

 1. **Insolvency Risk**: probability that creditors would not get paid even in the absence of a run
Theoretical Decomposition of Credit Risk

- Provides a theoretical accounting framework to decompose credit risk into:
 1. **Insolvency Risk**: probability that creditors would not get paid even in the absence of a run
 2. **Illiquidity Risk**: probability that creditors do not get paid *because* of a run, when they would have been paid in the absence of a run
Theoretical Decomposition of Credit Risk

Decomposition is counterfactual:

1. Insolvency Risk is the credit risk in the counterfactual world where short term funding was converted into long term funding
Theoretical Decomposition of Credit Risk

Decomposition is counterfactual:

1. Insolvency Risk is the credit risk in the counterfactual world where short term funding was converted into long term funding
2. Illiquidity Risk is the extra credit risk in the actual world where funding remains short term
Comparative Statics (and Policy Analysis?)

- Uncertainty about future insolvency drives illiquidity; but illiquidity risk has different comparative statics (policy response) from insolvency risk.
Comparative Statics (and Policy Analysis?)

- Uncertainty about future insolvency drives illiquidity; but illiquidity risk has different comparative statics (policy response) from insolvency risk
- Liquidity Risk is higher when....
Comparative Statics (and Policy Analysis?)

- Uncertainty about future insolvency drives illiquidity; but illiquidity risk has different comparative statics (policy response) from insolvency risk.
- Liquidity Risk is higher when...
 - short term creditors have higher outside options
Comparative Statics (and Policy Analysis?)

- Uncertainty about future insolvency drives illiquidity; but illiquidity risk has different comparative statics (policy response) from insolvency risk.
- Liquidity Risk is higher when....
 - short term creditors have higher outside options
 - funding is less short term
Comparative Statics (and Policy Analysis?)

- Uncertainty about future insolvency drives illiquidity; but illiquidity risk has different comparative statics (policy response) from insolvency risk
- Liquidity Risk is higher when....
 - short term creditors have higher outside options
 - funding is less short term
 - there is more uncertainty about insolvency
Comparative Statics (and Policy Analysis?)

- Uncertainty about future insolvency drives illiquidity; but illiquidity risk has different comparative statics (policy response) from insolvency risk
- Liquidity Risk is higher when....
 - short term creditors have higher outside options
 - funding is less short term
 - there is more uncertainty about insolvency
- Marginal return to making assets more liquid is decreasing in the level of liquid assets
The risk of failure from withdrawals is less important than the risk of future failure through balance sheet impairment (haircuts / fire sales)
The risk of failure from withdrawals is less important than the risk of future failure through balance sheet impairment (haircuts / fire sales)

We will describe....
The risk of failure from withdrawals is less important than the risk of future failure through balance sheet impairment (haircuts / fire sales).

We will describe:

1. how our model can be given a balance sheet impairment risk interpretation
The risk of failure from withdrawals is less important than the risk of future failure through balance sheet impairment (haircuts / fire sales)

We will describe....

1. ...how our model can be given a balance sheet impairment risk interpretation
2. ...how we can decompose illiquidity risk into.....
Balance Sheet Impairment

- The risk of failure from withdrawals is less important than the risk of future failure through balance sheet impairment (haircuts / fire sales)

- We will describe....

1. ...how our model can be given a balance sheet impairment risk interpretation
2. ...how we can decompose illiquidity risk into.....

 2.1 "run risk" (probability bank will fail before asset returns are realized)
The risk of failure from withdrawals is less important than the risk of future failure through balance sheet impairment (haircuts / fire sales)

We will describe:

1. ...how our model can be given a balance sheet impairment risk interpretation
2. ...how we can decompose illiquidity risk into.....
 2.1 "run risk" (probability bank will fail before asset returns are realized)
 2.2 "fire sale risk" (balance sheet is impaired by short run funding needs)
A couple of key things that are exogenous in our analysis:

1. Balance Sheet
Provisos

A couple of key things that are exogenous in our analysis:

1. Balance Sheet
2. Interest Rates
Three views of illiquidity versus insolvency:

- Disconnected models of insolvency and illiquidity
- Illiquidity Risk pinned down as difference between unique equilibrium under incomplete information with best equilibrium under complete information
- Decomposition of illiquidity risk and insolvency risk in the same unique equilibrium

I will return to literature later...
Three views of illiquidity versus insolvency:

1. Disconnected models of insolvency and illiquidity
Three views of illiquidity versus insolvency:

1. Disconnected models of insolvency and illiquidity
2. Illiquidity Risk pinned down as difference between unique equilibrium under incomplete information with best equilibrium under complete information

I will return to literature later....
Three views of illiquidity versus insolvency:

1. Disconnected models of insolvency and illiquidity
2. Illiquidity Risk pinned down as difference between unique equilibrium under incomplete information with best equilibrium under complete information
3. Decomposition of illiquidity risk and insolvency risk in the same unique equilibrium

I will return to literature later...
Literature

- Three views of illiquidity versus insolvency:
 1. Disconnected models of insolvency and illiquidity
 2. Illiquidity Risk pinned down as difference between unique equilibrium under incomplete information with best equilibrium under complete information
 3. Decomposition of illiquidity risk and insolvency risk in the same unique equilibrium

Three views of illiquidity versus insolvency:

1. Disconnected models of insolvency and illiquidity
2. Illiquidity Risk pinned down as difference between unique equilibrium under incomplete information with best equilibrium under complete information
3. Decomposition of illiquidity risk and insolvency risk in the same unique equilibrium

will return to literature later....
Paper History

- First draft in March 2009
Paper History

- First draft in March 2009
- Previous draft has ambitious objectives
Paper History

- First draft in March 2009
- Previous draft has ambitious objectives
 1. conceptual decomposition of credit risk

Klein Lecture at University of Pennsylvania
Paper History

- First draft in March 2009
- Previous draft has ambitious objectives
 1. conceptual decomposition of credit risk
 2. policy tool
Paper History

- First draft in March 2009
- Previous draft has ambitious objectives
 1. conceptual decomposition of credit risk
 2. policy tool
 3. crisis explanation
Paper History

- First draft in March 2009
- Previous draft has ambitious objectives
 1. conceptual decomposition of credit risk
 2. policy tool
 3. crisis explanation
- Motive for resurrection...
Paper History

- First draft in March 2009
- Previous draft has ambitious objectives
 1. conceptual decomposition of credit risk
 2. policy tool
 3. crisis explanation
- Motive for resurrection...
 - focus on (1) conceptual decomposition of credit risk (although will note relevance for (2) and (3) in passing?)
Paper History

- First draft in March 2009
- Previous draft has ambitious objectives
 1. conceptual decomposition of credit risk
 2. policy tool
 3. crisis explanation
- Motive for resurrection...
 - focus on (1) conceptual decomposition of credit risk (although will note relevance for (2) and (3) in passing?)
 - 25th percentile of my google scholar cites!
Paper History

- First draft in March 2009
- Previous draft has ambitious objectives
 1. conceptual decomposition of credit risk
 2. policy tool
 3. crisis explanation
- Motive for resurrection...
 - focus on (1) conceptual decomposition of credit risk (although will note relevance for (2) and (3) in passing?)
 - 25th percentile of my google scholar cites!
 - Klein Lecture at University of Pennsylvania
Benchmark Model

- Want to identify the simplest model in which we can carry out the conceptual decomposition of credit risk described above
Benchmark Model

- Want to identify the simplest model in which we can carry out the conceptual decomposition of credit risk described above
- Very stark model with lots of extreme assumptions
Benchmark Model

- Two periods

Re-...nancing / liquidity problems arise at date 1

Asset values realized at date 2
Benchmark Model

- Two periods
- Re-financing / liquidity problems arise at date 1
Benchmark Model

- Two periods
- Re-financing / liquidity problems arise at date 1
- Asset values realized at date 2
Balance Sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash M</td>
<td>Equity E</td>
</tr>
<tr>
<td>Risky Asset Y</td>
<td>Short Debt S</td>
</tr>
<tr>
<td></td>
<td>Long Debt L</td>
</tr>
</tbody>
</table>
Balance Sheet Assumptions

- **Assets:**

- "Cash" is safe and fully liquid ("Treasuries")
- Risky assets cannot be sold
- Interest on safe assets and all liabilities normalized to zero
Balance Sheet Assumptions

- **Assets:**
 - "Cash" is safe and fully liquid ("Treasuries"?)
Balance Sheet Assumptions

- Assets:
 - "Cash" is safe and fully liquid ("Treasuries"?)
 - Risky assets cannot be sold
Balance Sheet Assumptions

- Assets:
 - "Cash" is safe and fully liquid ("Treasuries"?)
 - Risky assets cannot be sold
- Interest on safe assets and all liabilities normalized to zero
Balance Sheet Assumptions

- Assets:
 - "Cash" is safe and fully liquid ("Treasuries"?)
 - Risky assets cannot be sold
- Interest on safe assets and all liabilities normalized to zero
- Assumption 1. (Possibility of Runs)

\[
\frac{M}{S} < 1.
\]
Risky Asset Returns

- Total return on the risky asset at date 2 is θ
Risky Asset Returns

- Total return on the risky asset at date 2 is θ
- If nothing else happened before date 2, the equity of the bank would be

$$M + \theta Y - S - L.$$
Risky Asset Returns

- Total return on the risky asset at date 2 is θ

- If nothing else happened before date 2, the equity of the bank would be

 \[M + \theta Y - S - L. \]

- The bank is *solvent* at date 2 if this expression is positive, i.e., if

 \[\theta \geq \theta^{**} = \frac{S + L - M}{Y}. \] (1)
Risky Asset Returns

- Total return on the risky asset at date 2 is θ
- If nothing else happened before date 2, the equity of the bank would be
 $$M + \theta Y - S - L.$$
- The bank is solvent at date 2 if this expression is positive, i.e., if
 $$\theta \geq \theta^{**} = \frac{S + L - M}{Y}.$$ \hfill (1)
- Call θ^{**} the solvency point
Insolvency Risk

- At date 1, θ is believed to be uniformly distributed on the interval $[\overline{\theta} - \frac{1}{2}\sigma, \overline{\theta} + \frac{1}{2}\sigma]$.
At date 1, θ is believed to be uniformly distributed on the interval $[\bar{\theta} - \frac{1}{2} \sigma, \bar{\theta} + \frac{1}{2} \sigma]$.

Insolvency risk at date 1 is the probability that the bank fails under this scenario.
Insolvency Risk

- At date 1, θ is believed to be uniformly distributed on the interval $[\bar{\theta} - \frac{1}{2}\sigma, \bar{\theta} + \frac{1}{2}\sigma]$.
- Insolvency risk at date 1 is the probability that the bank fails under this scenario.
- Insolvency risk $S(\bar{\theta})$ is then the probability that $\theta \leq \theta^{**}$ or

$$S(\bar{\theta}) = \begin{cases} 1, & \text{if } \bar{\theta} \leq \theta^{**} - \frac{1}{2}\sigma \\ \frac{1}{2} + \frac{\bar{\theta} - \theta^{**}}{\sigma}, & \text{if } \theta^{**} - \frac{1}{2}\sigma \leq \bar{\theta} \leq \theta^{**} + \frac{1}{2}\sigma \\ 0, & \text{if } \theta^{**} + \frac{1}{2}\sigma \leq \bar{\theta} \end{cases}$$
Insolvency Risk

- At date 1, θ is believed to be uniformly distributed on the interval $[\bar{\theta} - \frac{1}{2}\sigma, \bar{\theta} + \frac{1}{2}\sigma]$.
- Insolvency risk at date 1 is the probability that the bank fails under this scenario.
- Insolvency risk $S(\bar{\theta})$ is then the probability that $\theta \leq \theta^{**}$ or

$$
S(\bar{\theta}) = \begin{cases}
1, & \text{if } \bar{\theta} \leq \theta^{**} - \frac{1}{2}\sigma \\
\frac{1}{2} + \frac{\bar{\theta} - \theta^{**}}{\sigma}, & \text{if } \theta^{**} - \frac{1}{2}\sigma \leq \bar{\theta} \leq \theta^{**} + \frac{1}{2}\sigma \\
0, & \text{if } \theta^{**} + \frac{1}{2}\sigma \leq \bar{\theta}
\end{cases}
$$

- see next slide....
Insolvency Risk

Insolvency risk, uniform case
Illiquidity Risk: Short Term Creditors’ Decisions

- Outside option α with $0 < \alpha < 1$ for creditors who do not rollover
Illiquidity Risk: Short Term Creditors’ Decisions

- Outside option α with $0 < \alpha < 1$ for creditors who do not rollover
 - Assumption 2 (Possibility of No Runs)

 $$\alpha < \frac{M}{S}$$
Outside option α with $0 < \alpha < 1$ for creditors who do not rollover

- Assumption 2 (Possibility of No Runs)

$$\alpha < \frac{M}{S}$$

- Key Implicit Assumption
Illiquidity Risk: Short Term Creditors’ Decisions

- Outside option α with $0 < \alpha < 1$ for creditors who do not rollover
 - Assumption 2 (Possibility of No Runs)
 \[\alpha < \frac{M}{S} \]

- Key Implicit Assumption
 - no balance sheet impairment from meeting liquidity needs, e.g., if you sell bonds, you can buy them back at the same price; if you repo bonds, no haircut...
Illiquidity Risk: Short Term Creditors’ Decisions

- If proportion π of creditors do not rollover, then the bank will survive if

$$\pi S \leq M.$$
Illiquidity Risk: Short Term Creditors’ Decisions

- If proportion π of creditors do not rollover, then the bank will survive if
 \[\pi S \leq M. \]

- Assume short term creditors at the critical point where runs occur have uniform belief ("Laplacian belief") over the proportion of creditors running ("global game" foundation following shortly...)
Illiquidity Risk: Short Term Creditors’ Decisions

- If proportion π of creditors do not rollover, then the bank will survive if

$$\pi S \leq M.$$

- Assume short term creditors at the critical point where runs occur have uniform belief ("Laplacian belief") over the proportion of creditors running ("global game" foundation following shortly...)

- The probability of the bank surviving a run will be

$$\frac{M}{S}.$$
The expected return of short term debt is the probability that there is no run times the probability that the bank is solvent, i.e.,

$$\frac{M}{S} \left(1 - S(\bar{\theta})\right)$$
The expected return of short term debt is the probability that there is no run times the probability that the bank is solvent, i.e.,

\[
\frac{M}{S} \left(1 - S(\bar{\theta}) \right)
\]

Write \(\theta_0^* \) for the "run point", i.e., unique value of \(\bar{\theta} \) solving

\[
\frac{M}{S} \left(1 - S(\bar{\theta}) \right) = \alpha
\]
The expected return of short term debt is the probability that there is no run times the probability that the bank is solvent, i.e.,

\[\frac{M}{S} \left(1 - S(\bar{\theta})\right) \]

Write \(\theta_0^* \) for the "run point", i.e., unique value of \(\bar{\theta} \) solving

\[\frac{M}{S} \left(1 - S(\bar{\theta})\right) = \alpha \]

Can show

\[\theta_0^* = \theta^{**} + \sigma \left(\frac{\alpha S}{M} - \frac{1}{2}\right). \]
"Global Game" Foundations for "Laplacian" Beliefs

- Suppose each creditor observed mean $\bar{\theta}$ with a small amount of noise $\varepsilon \sim f(\cdot)$, so $x_i = \bar{\theta} + \tau \varepsilon$
"Global Game" Foundations for "Laplacian" Beliefs

- Suppose each creditor observed mean $\bar{\theta}$ with a small amount of noise $\varepsilon \sim f(\cdot)$, so $x_i = \bar{\theta} + \tau \varepsilon$
- Smooth prior $g(\cdot)$ on $\bar{\theta}$

Global games acicianados: See Morris, Shin and Yildiz (2015) on uniform rank beliefs and "common belief foundations of global games"
"Global Game" Foundations for "Laplacian" Beliefs

- Suppose each creditor observed mean $\bar{\theta}$ with a small amount of noise $\varepsilon \sim f(\cdot)$, so $x_i = \bar{\theta} + \tau\varepsilon$
- Smooth prior $g(\cdot)$ on $\bar{\theta}$
- Statistical Question: What belief does creditor i observing x_i have about the proportion of creditors π with higher signals?

If $g(\cdot)$ is uniform, or if τ is small, the creditor has (approximately) uniform beliefs on π independent of x_i.

Intuition:
- If creditor's signal conveys no information about the rank of creditor's signal, then he must have uniform belief by principle of insuficient reason.
- If $g(\cdot)$ is uniform, or if τ is small, creditor's signal conveys little information about rank of creditor's signal.

Now at run point $x_\theta = \theta_0$, marginal creditor will have uniform beliefs over proportion of creditors running.

Global games acianados: See Morris, Shin and Yildiz (2015) on uniform rank beliefs and “common belief foundations of global games.”
"Global Game" Foundations for "Laplacian" Beliefs

- Suppose each creditor observed mean $\bar{\theta}$ with a small amount of noise $\varepsilon \sim f(\cdot)$, so $x_i = \bar{\theta} + \tau \varepsilon$
- Smooth prior $g(\cdot)$ on $\bar{\theta}$
- Statistical Question: What belief does creditor i observing x_i have about the proportion of creditors π with higher signals?
- If $g(\cdot)$ is uniform, or if τ is small, the creditor has (approximately) uniform beliefs on π independent of x_i
"Global Game" Foundations for "Laplacian" Beliefs

- Suppose each creditor observed mean $\bar{\theta}$ with a small amount of noise $\varepsilon \sim f(\cdot)$, so $x_i = \bar{\theta} + \tau \varepsilon$
- Smooth prior $g(\cdot)$ on $\bar{\theta}$
- Statistical Question: What belief does creditor i observing x_i have about the proportion of creditors π with higher signals?
- If $g(\cdot)$ is uniform, or if τ is small, the creditor has (approximately) uniform beliefs on π independent of x_i
- Intuition:
Suppose each creditor observed mean $\bar{\theta}$ with a small amount of noise $\epsilon \sim f(\cdot)$, so $x_i = \bar{\theta} + \tau \epsilon$

Smooth prior $g(\cdot)$ on $\bar{\theta}$

Statistical Question: What belief does creditor i observing x_i have about the proportion of creditors π with higher signals?

If $g(\cdot)$ is uniform, or if τ is small, the creditor has (approximately) uniform beliefs on π independent of x_i

Intuition:

If creditor’s signal conveys no information about the rank of creditor’s signal, then he must have uniform belief by principle of insufficient reason
"Global Game" Foundations for "Laplacian" Beliefs

- Suppose each creditor observed mean \(\bar{\theta} \) with a small amount of noise \(\epsilon \sim f(\cdot) \), so \(x_i = \bar{\theta} + \tau \epsilon \)
- Smooth prior \(g(\cdot) \) on \(\bar{\theta} \)
- Statistical Question: What belief does creditor \(i \) observing \(x_i \) have about the proportion of creditors \(\pi \) with higher signals?
- If \(g(\cdot) \) is uniform, or if \(\tau \) is small, the creditor has (approximately) uniform beliefs on \(\pi \) independent of \(x_i \)
- Intuition:
 - If creditor’s signal conveys no information about the rank of creditor’s signal, then he must have uniform belief by principle of insufficient reason
 - If \(g(\cdot) \) is uniform, or if \(\tau \) is small, creditor’s signal conveys little information about rank of creditor’s signal
"Global Game" Foundations for "Laplacian" Beliefs

- Suppose each creditor observed mean $\bar{\theta}$ with a small amount of noise $\varepsilon \sim f(\cdot)$, so $x_i = \bar{\theta} + \tau\varepsilon$
- Smooth prior $g(\cdot)$ on $\bar{\theta}$
- Statistical Question: What belief does creditor i observing x_i have about the proportion of creditors π with higher signals?
- If $g(\cdot)$ is uniform, or if τ is small, the creditor has (approximately) uniform beliefs on π independent of x_i
- Intuition:
 - If creditor’s signal conveys no information about the rank of creditor’s signal, then he must have uniform belief by principle of insufficient reason
 - If $g(\cdot)$ is uniform, or if τ is small, creditor’s signal conveys little information about rank of creditor’s signal
- Now at run point $x^* \approx \theta_0^*$, marginal creditor will have uniform beliefs over proportion of creditors running
"Global Game" Foundations for "Laplacian" Beliefs

- Suppose each creditor observed mean $\bar{\theta}$ with a small amount of noise $\varepsilon \sim f(\cdot)$, so $x_i = \bar{\theta} + \tau \varepsilon$
- Smooth prior $g(\cdot)$ on $\bar{\theta}$
- Statistical Question: What belief does creditor i observing x_i have about the proportion of creditors π with higher signals?
- If $g(\cdot)$ is uniform, or if τ is small, the creditor has (approximately) uniform beliefs on π independent of x_i
- Intuition:
 - If creditor’s signal conveys no information about the rank of creditor’s signal, then he must have uniform belief by principle of insufficient reason
 - If $g(\cdot)$ is uniform, or if τ is small, creditor’s signal conveys little information about rank of creditor’s signal
- Now at run point $x^* \approx \theta_0^*$, marginal creditor will have uniform beliefs over proportion of creditors running
- Global games afficianados: See Morris, Shin and Yildiz (2015) on uniform rank beliefs and "common belief foundations of global games"
Illiquidity Risk

- Illiquidity risk is the probability that the bank fails due to a run when it would have survived in the event of a run.

\[
\mathcal{R}(\bar{\theta}) = \begin{cases}
0, & \text{if } \bar{\theta} \leq \theta^{**} - \frac{1}{2}\sigma \\
\frac{1}{2} - \frac{1}{\sigma} (\theta^{**} - \bar{\theta}), & \text{if } \bar{\theta} \in \left[\theta^{**} - \frac{1}{2}\sigma, \sigma \left(\frac{\alpha S}{M+X} - \frac{1}{2}\right)\right] \\
0, & \text{if } \bar{\theta} > \theta^{**} + \sigma \left(\frac{\alpha S}{M+X} - \frac{1}{2}\right)
\end{cases}
\]
Illiquidity Risk

Insolvency risk, uniform case

Default probability

$\theta^{**} - \frac{\sigma}{2}$ θ^{**} θ^{*} $\theta^{**} + \frac{\sigma}{2}$
Ex Ante Illiquidity Risk

- Write $\lambda = \frac{M}{S}$ for the "liquidity ratio"
Ex Ante Illiquidity Risk

- Write $\lambda = \frac{M}{S}$ for the "liquidity ratio"
- To evaluate policy, we would like to identify risk before $\bar{\theta}$ is known

Could also study ex ante insolvency risk...
Ex Ante Illiquidity Risk

- Write $\lambda = \frac{M}{S}$ for the "liquidity ratio"
- To evaluate policy, we would like to identify risk before $\bar{\theta}$ is known
- Suppose that at prior time 0, $\bar{\theta}$ is distributed with uniformly on $\left[\theta_0 - \frac{1}{2} \xi, \theta_0 + \frac{1}{2} \xi\right]$

Could also study ex ante insolvency risk...
Ex Ante Illiquidity Risk

- Write $\lambda = \frac{M}{S}$ for the "liquidity ratio".
- To evaluate policy, we would like to identify risk before $\bar{\theta}$ is known.
- Suppose that at prior time 0, $\bar{\theta}$ is distributed with uniformly on $\theta_0, \theta_0 + \frac{1}{2} \xi$,

$$\left[\theta_0 - \frac{1}{2} \xi, \theta_0 + \frac{1}{2} \xi \right]$$

- Assume that $\xi \gg \sigma$, ex ante illiquidity risk will be $\frac{1}{\xi}$ times the area of the triangle

$$EAIR = \frac{\sigma}{2\xi} \left(\frac{\alpha}{\lambda} \right)^2$$
Ex Ante Illiquidity Risk

- Write $\lambda = \frac{M}{S}$ for the "liquidity ratio"
- To evaluate policy, we would like to identify risk before $\bar{\theta}$ is known
- Suppose that at prior time 0, $\bar{\theta}$ is distributed with uniformly on $[\theta_0 - \frac{1}{2} \xi, \theta_0 + \frac{1}{2} \xi]$

- Assume that $\xi \gg \sigma$, ex ante illiquidity risk will be $\frac{1}{\xi}$ times the area of the triangle

$$EAIR = \frac{\sigma}{2\xi} \left(\frac{\alpha}{\lambda} \right)^2$$

- Could also study ex ante insolvency risk....
Ex Ante Illiquidity Risk Comparative Statics

- No illiquidity risk without solvency uncertainty
Ex Ante Illiquidity Risk Comparative Statics

- No illiquidity risk without solvency uncertainty
- Illiquidity risk is decreasing in...
Ex Ante Illiquidity Risk Comparative Statics

- No illiquidity risk without solvency uncertainty
- Illiquidity risk is decreasing in...
 - solvency precision \(\left(\frac{1}{\sigma} \right) \)
Ex Ante Illiquidity Risk Comparative Statics

- No illiquidity risk without solvency uncertainty
- Illiquidity risk is decreasing in...
 - solvency precision ($\frac{1}{\sigma}$)
 - excess return of short run debt ($\frac{1}{\alpha}$)
Ex Ante Illiquidity Risk Comparative Statics

- No illiquidity risk without solvency uncertainty
- Illiquidity risk is decreasing in...
 - solvency precision ($\frac{1}{\sigma}$)
 - excess return of short run debt ($\frac{1}{\alpha}$)
 - liquidity ratio (λ)
Ex Ante Illiquidity Risk Comparative Statics

- No illiquidity risk without solvency uncertainty
- Illiquidity risk is decreasing in...
 - solvency precision \(\frac{1}{\sigma} \)
 - excess return of short run debt \(\frac{1}{\alpha} \)
 - liquidity ratio \(\lambda \)

- There are decreasing returns to liquidity...i.e., as liquidity ratio \(\lambda \) increases...
Ex Ante Illiquidity Risk Comparative Statics

- No illiquidity risk without solvency uncertainty
- Illiquidity risk is decreasing in...
 - solvency precision \(\frac{1}{\sigma}\)
 - excess return of short run debt \(\frac{1}{\bar{\alpha}}\)
 - liquidity ratio \(\lambda\)
- There are decreasing returns to liquidity...i.e., as liquidity ratio \(\lambda\) increases...
 - response of EALR to liquidity ratio \(\lambda\) \((\frac{d}{d\lambda} EILR)\), is decreasing in \(\lambda\)
Ex Ante Illiquidity Risk Comparative Statics

- No illiquidity risk without solvency uncertainty
- Illiquidity risk is decreasing in...
 - solvency precision ($\frac{1}{\sigma}$)
 - excess return of short run debt ($\frac{1}{\alpha}$)
 - liquidity ratio (λ)
- There are decreasing returns to liquidity...i.e., as liquidity ratio (λ) increases...
 - response of EALR to liquidity ratio λ ($\frac{d}{d\lambda} EILR$), is decreasing in λ
 - response of EALR to excess return $\frac{1}{\alpha}$ ($\frac{d}{d(\frac{1}{\alpha})} EILR$) is decreasing in λ
Suppose now that the bank can always come up with enough cash to pay off short term creditors....
Balance Sheet Impairment Perspective

- Suppose now that the bank can always come up with enough cash to pay off short term creditors....
- ...but the cost of doing so impairs the balance sheet
Suppose now that the bank can always come up with enough cash to pay off short term creditors....

...but the cost of doing so impairs the balance sheet

Define impairment function

$$\tilde{\delta} : \mathbb{R}_+ \rightarrow \mathbb{R}_+$$

where

$$\tilde{\delta}(Z)$$

is the cost to the balance sheet if proportion Z of creditors withdraw.
If we let

$$\tilde{\delta}(Z) = \begin{cases}
0, & \text{if } Z \leq M \\
\infty, & \text{if } Z > M
\end{cases}$$

then our results can be interpreted as balance sheet impairment with the bank turning into a zombie bank that is surely going to fail in period 2.
Balance Sheet Impairment Interpretation

Can consider less extreme assumptions on $\tilde{\delta}$:

1. $\tilde{\delta}(Z)$ is increasing and convex, with $\tilde{\delta}'(Z) \leq 1$.

Case studied by Rochet and Vives (2004) and Vives (2013)
Balance Sheet Impairment Interpretation

Can consider less extreme assumptions on $\tilde{\delta}$:

1. $\tilde{\delta}(Z)$ is increasing and convex, with $\tilde{\delta}'(Z) \leq 1$.

 - Interpretation: $\tilde{\delta}(Z)$ is the haircut or price discount associated with Zth unit of assets sold

Case studied by Rochet and Vives (2004) and Vives (2013)
Can consider less extreme assumptions on $\tilde{\delta}$:

1. $\tilde{\delta}(Z)$ is increasing and convex, with $\tilde{\delta}'(Z) \leq 1$.

 - Interpretation: $\tilde{\delta}(Z)$ is the haircut or price discount associated with Zth unit of assets sold.

2. Piecewise linear:

 $$\tilde{\delta}(Z) = \begin{cases}
 0, & \text{if } Z \leq M_0 \\
 \delta(Z - M_0), & \text{if } M_0 \leq Z \leq M \\
 \infty, & \text{if } M < Z
 \end{cases}$$

Balance Sheet Impairment Interpretation

Can consider less extreme assumptions on $\tilde{\delta}$:

1. $\tilde{\delta}(Z)$ is increasing and convex, with $\tilde{\delta}'(Z) \leq 1$.

 - Interpretation: $\tilde{\delta}(Z)$ is the haircut or price discount associated with Zth unit of assets sold

2. Piecewise linear:

 $$\tilde{\delta}(Z) = \begin{cases}
 0, & \text{if } Z \leq M_0 \\
 \delta(Z - M_0), & \text{if } M_0 \leq Z \leq M \\
 \infty, & \text{if } M < Z
 \end{cases}$$

 - Case studied by Rochet and Vives (2004) and Vives (2013)
Another Decomposition

Two kinds of illiquidity risk:

1. Run risk:

\[\delta(Z) = \infty \]

2. Fire Sale risk:

2.1 Being solvent in the absence of a run;

2.2 Surviving the "run" (\(\delta(Z) < \infty \))
Another Decomposition

Two kinds of illiquidity risk:

1. Run risk:
 - probability of guaranteed bank failure (now or later) whatever the balance sheet...
Another Decomposition

Two kinds of illiquidity risk:

1. Run risk:
 - probability of guaranteed bank failure (now or later) whatever the balance sheet...
 - $\tilde{\delta}(Z) = \infty$
Another Decomposition

Two kinds of illiquidity risk:

1. Run risk:
 - probability of guaranteed bank failure (now or later) whatever the balance sheet...
 - \(\tilde{\delta}(Z) = \infty \)

2. Fire Sale risk:
Another Decomposition

Two kinds of illiquidity risk:

1. Run risk:
 - probability of guaranteed bank failure (now or later) whatever the balance sheet...
 - $\tilde{\delta}(Z) = \infty$

2. Fire Sale risk:
 - probability of failure because of (partial) impairment of balance sheet during a run despite....
Another Decomposition

Two kinds of illiquidity risk:

1. Run risk:
 - probability of guaranteed bank failure (now or later) whatever the balance sheet...
 - $\tilde{\delta}(Z) = \infty$

2. Fire Sale risk:
 - probability of failure because of (partial) impairment of balance sheet during a run despite....
 2.1being solvent in the absence of a run;
Another Decomposition

Two kinds of illiquidity risk:

1. Run risk:
 - probability of guaranteed bank failure (now or later) whatever the balance sheet...
 - $\tilde{\delta}(Z) = \infty$

2. Fire Sale risk:
 - probability of failure because of (partial) impairment of balance sheet during a run despite....
 2.1being solvent in the absence of a run;
 2.2surviving the "run" ($\tilde{\delta}(Z) < \infty$)
Liquidity View: Run Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending and the run causes bank failure
Liquidity View: Run Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending and the run causes bank failure
- Focus on liability side of balance sheet
Liquidity View: Run Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending and the run causes bank failure
- Focus on liability side of balance sheet
- Problem is maturity mismatch, panic
Liquidity View: Run Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending *and the run causes bank failure*
- Focus on liability side of balance sheet
- Problem is maturity mismatch, panic
- Classical Solutions:
Liquidity View: Run Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending and the run causes bank failure
- Focus on liability side of balance sheet
- Problem is maturity mismatch, panic
- Classical Solutions:
 - Longer term funding / remove liquidity mismatch
Liquidity View: Run Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending and the run causes bank failure
- Focus on liability side of balance sheet
- Problem is maturity mismatch, panic
- Classical Solutions:
 - Longer term funding / remove liquidity mismatch
 - Lender of Last Resort
Liquidity View: Run Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending and the run causes bank failure
- Focus on liability side of balance sheet
- Problem is maturity mismatch, panic
- Classical Solutions:
 - Longer term funding / remove liquidity mismatch
 - Lender of Last Resort
 - Liquidity Regulation: assets that have the highest possible liquidation value
Liquidity View: Fire Sale Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending and the run impares the balance sheet

Classical Solutions:
- Longer term funding / remove liquidity mismatch
- Lender of Last Resort
- Liquidity Regulation: assets whose liquidation causes the least impairment of the balance sheet
Liquidity View: Fire Sale Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending *and the run impares the balance sheet*
- Focus on liability side of balance sheet
Liquidity View: Fire Sale Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending and the run impares the balance sheet
- Focus on liability side of balance sheet
- Problem is maturity mismatch, panic
Liquidity View: Fire Sale Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending and the run impares the balance sheet
- Focus on liability side of balance sheet
- Problem is maturity mismatch, panic
- Classical Solutions:
Liquidity View: Fire Sale Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending *and the run impares the balance sheet*
- Focus on liability side of balance sheet
- Problem is maturity mismatch, panic
- Classical Solutions:
 - Longer term funding / remove liquidity mismatch
Liquidity View: Fire Sale Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending and the run impares the balance sheet
- Focus on liability side of balance sheet
- Problem is maturity mismatch, panic
- Classical Solutions:
 - Longer term funding / remove liquidity mismatch
 - Lender of Last Resort
Liquidity View: Fire Sale Risk

- Banks get in trouble when lenders withdraw / fail to rollover deposits / short term lending and the run impares the balance sheet
- Focus on liability side of balance sheet
- Problem is maturity mismatch, panic
- Classical Solutions:
 - Longer term funding / remove liquidity mismatch
 - Lender of Last Resort
 - Liquidity Regulation: assets whose liquidation causes the least impairment of the balance sheet
Two Kinds of Illiquidity Risk in the Financial Crisis

- Bear Sterns failed after a run (at least, according to Chris Cox)
Two Kinds of Illiquidity Risk in the Financial Crisis

- Bear Sterns failed after a run (at least, according to Chris Cox)
- Many other banks had impaired balance sheets because of the drying up of short term funding and implied need for fire sales
Three Cases

There are now three possible scenarios corresponding to the proportion of short term creditors π who do not rollover:

1. If $\pi S \leq M_0$, then withdrawals can be met out of cash, ex post equity remains unchanged and the bank will be solvent ex post if inequality (1) holds.

2. If $M_0 \leq \pi S$, then πS must be sold and adjusted so the solvency point becomes:

$$\theta = \theta + \delta(\pi S)$$

3. If $M_0 > \pi S$, then the bank cannot meet its obligations, and goes into bankruptcy at the interim date.
Three Cases

There are now three possible scenarios corresponding to the proportion of short term creditors π who do not rollover:

1. If $\pi S \leq M_0$, then withdrawals can be met out of cash, ex post equity remains unchanged and the bank will be solvent ex post if inequality (1) holds.

2. If $M_0 \leq \pi S \leq M$, then $\pi S - M_0$ must be sold and adjusted solvency point becomes:

$$\theta \geq \theta_{\delta^*}^{**} (\pi)$$

$$= \frac{S + L + \delta (\pi S - M_0) - M}{Y}$$

$$= \theta^{**} + \frac{\delta (\pi S - M_0)}{Y}$$
Three Cases

There are now three possible scenarios corresponding to the proportion of short term creditors π who do not rollover:

1. If $\pi S \leq M_0$, then withdrawals can be met out of cash, ex post equity remains unchanged and the bank will be solvent ex post if inequality (1) holds.

2. If $M_0 \leq \pi S \leq M$, then $\pi S - M_0$ must be sold and adjusted solvency point becomes:

\[
\theta \geq \theta^{**}_\delta (\pi) \\
= \frac{S + L + \delta (\pi S - M_0) - M}{Y} \\
= \theta^{**} + \frac{\delta (\pi S - M_0)}{Y}
\]

3. If $M < \pi S$, then the bank cannot meet its obligations, and goes into bankruptcy at the interim date.
Short Term Creditors

- Algebra gets messier...
Short Term Creditors

- Algebra gets messier...
- Write θ_0^* for the run point (when $\delta = 0$)
Short Term Creditors

- Algebra gets messier...
- Write θ_0^* for the run point (when $\delta = 0$)
- We have fire sale point

\[\theta_1^* = \theta_0^* + \frac{\delta (M - M_0)^2}{2YM} \]

\[= \theta^{**} + \sigma \left(\frac{\alpha S}{M} - \frac{1}{2} \right) + \frac{\delta (M - M_0)^2}{2YM} \]
Fire Sale Risk

![Graph showing insolvency risk in a uniform case]

- θ^*
- θ_0
- θ^*
- $\theta^* + \frac{\sigma}{2}$
Fire Sale Risk

- Exists even without solvency uncertainty
Fire Sale Risk

- Exists even without solvency uncertainty
- Still linear in σ

(Roughly) Linear in M
Fire Sale Risk

- Exists even without solvency uncertainty
- Still linear in σ
- Increasing in δ, returns to previous case if $\delta = 0$
Fire Sale Risk

- Exists even without solvency uncertainty
- Still linear in σ
- Increasing in δ, returns to previous case if $\delta = 0$
- Still higher marginal benefit when ex ante liquidity risk is high
Fire Sale Risk

- Exists even without solvency uncertainty
- Still linear in σ
- Increasing in δ, returns to previous case if $\delta = 0$
- Still higher marginal benefit when ex ante liquidity risk is high
- (Roughly) Linear in $M - M_0$
Fire Sale Risk

- Exists even without solvency uncertainty
- Still linear in σ
- Increasing in δ, returns to previous case if $\delta = 0$
- Still higher marginal benefit when ex ante liquidity risk is high
- (Roughly) Linear in $M - M_0$
- Reducing M_0 drives fire sale risk
Normal Insolvency Risk

Total credit risk for $\sigma = 0.25$, $\alpha = 0.5$
Normal (Run) Illiquidity Risk

Total credit risk for $\sigma = 0.25$, $\alpha = 0.5$
Normal Fire Sale Risk

Total credit risk for $\sigma = 0.25$, $\alpha = 0.5$
Total credit risk for $\sigma = 0.5$, $\alpha = 0.5$
Decreasing Solvency Uncertainty

Total credit risk for $\sigma = 0.05, \alpha = 0.5$
Decreasing Solvency Uncertainty Further

Total credit risk for $\sigma = 0.01$, $\alpha = 0.5$
Small Noise Limit

As $\sigma \to 0$,

- "run risk" disappears:

 $\theta_0^* \to \theta^{**}$
As $\sigma \to 0$,

- "run risk" disappears:
 $$\theta_0^* \to \theta^{**}$$

- fire sale risk does not disappear:
 $$\theta_\delta^* \to \theta^{**} + \delta \left(\frac{\alpha S - M_0}{Y} \right)$$
If $\sigma \to 0$ and $\theta > \theta^{**}$, short term creditors believe that the bank is solvent (in the counterfactual sense) and there will not be a run (in the counterfactual sense)....
Fire Sale Noise Limit

- If $\sigma \to 0$ and $\theta > \theta^{**}$, short term creditors believe that the bank is solvent (in the counterfactual sense) and there will not be a run (in the counterfactual sense)....

- But there will be a fire sale point $\theta^*_\delta > \theta^{**}$
Fire Sale Noise Limit

- If $\sigma \to 0$ and $\theta > \theta^{**}$, short term creditors believe that the bank is solvent (in the counterfactual sense) and there will not be a run (in the counterfactual sense)....
- But there will be a fire sale point $\theta^*_\delta > \theta^{**}$
- Fire Sale Point is associated with a critical proportion of creditors π^*_δ such that if that proportion ran, the balance sheet would be degraded enough to make the bank insolvent
Fire Sale Noise Limit

- If $\sigma \to 0$ and $\theta > \theta^{**}$, short term creditors believe that the bank is solvent (in the counterfactual sense) and there will not be a run (in the counterfactual sense)....
- But there will be a fire sale point $\theta_d^* > \theta^{**}$
- Fire Sale Point is associated with a critical proportion of creditors π_d^* such that if that proportion ran, the balance sheet would be degraded enough to make the bank insolvent
- Laplacian beliefs then imply fire sale run point
Fire Sale Noise Limit Algebra

- Repayment will occur if π satisfies

$$\theta^{**} + \frac{\delta (\pi S - M_0)}{Y} \geq \theta^*$$
Fire Sale Noise Limit Algebra

- Repayment will occur if π satisfies

$$\theta^{**} + \frac{\delta (\pi S - M_0)}{Y} \geq \theta^*_\delta$$

- Making π the subject

$$\pi^*_\delta \geq \frac{1}{S} \left(\frac{(\theta^*_\delta - \theta^{**}) Y}{\delta} + M_0 \right)$$
Fire Sale Noise Limit Algebra

- Repayment will occur if π satisfies
 \[
 \theta^{**} + \frac{\delta (\pi S - M_0)}{Y} \geq \theta^*_\delta
 \]

- Making π the subject
 \[
 \pi^*_\delta \geq \frac{1}{S} \left(\frac{(\theta^*_\delta - \theta^{**})}{\delta} Y + M_0 \right)
 \]

- Creditor indifference implies
 \[
 \frac{1}{S} \left(\frac{(\theta^*_\delta - \theta^{**})}{\delta} Y + M_0 \right) = \alpha
 \]
Fire Sale Noise Limit Algebra

- Repayment will occur if π satisfies

$$\theta^{**} + \frac{\delta (\pi S - M_0)}{Y} \geq \theta^{*}$$

- Making π the subject

$$\pi^{*}_\delta \geq \frac{1}{S} \left(\frac{(\theta^*_\delta - \theta^{**}) Y}{\delta} + M_0 \right)$$

- Creditor indifference implies

$$\frac{1}{S} \left(\frac{(\theta^*_\delta - \theta^{**}) Y}{\delta} + M_0 \right) = \alpha$$

- and so

$$\theta^*_\delta = \theta^{**} + \delta \left(\frac{\alpha S - M_0}{Y} \right)$$
More Robustness

- Can add in richer balance sheet (arbitrary combinations of riskiness and liquidity of assets)
More Robustness

- Can add in richer balance sheet (arbitrary combinations of riskiness and liquidity of assets)
- Could endogenize balance sheet (although depends on banking theory)... analysis would still be relevant at a time after balance sheet choice
More Robustness

- Can add in richer balance sheet (arbitrary combinations of riskiness and liquidity of assets)
- Could endogenize balance sheet (although depends on banking theory). Analysis would still be relevant at a time after balance sheet choice
- Could endogenize interest rates (with signalling ruling out arbitrary interest rates on short run debt)
Literature

1. Multiple Equilibria, e.g., Diamond-Dybvig (1983)
1. Multiple Equilibria, e.g., Diamond-Dybvig (1983)
 - Solvency Risk \approx Unique (Bad) Equilibrium
Literature

1. Multiple Equilibria, e.g., Diamond-Dybvig (1983)
 - Solvency Risk \(\approx \) Unique (Bad) Equilibrium
 - Illiquidity Risk \(\approx \) Selection of Bad Equilibrium
1. Multiple Equilibria, e.g., Diamond-Dybvig (1983)
 - Solvency Risk \(\approx \) Unique (Bad) Equilibrium
 - Illiquidity Risk \(\approx \) Selection of Bad Equilibrium

2. "Informational Selection": Compare informationally selected unique equilibrium with best complete information equilibrium
Literature

1. Multiple Equilibria, e.g., Diamond-Dybvig (1983)
 - Solvency Risk ≈ Unique (Bad) Equilibrium
 - Illiquidity Risk ≈ Selection of Bad Equilibrium

2. "Informational Selection": Compare informationally selected unique equilibrium with best complete information equilibrium
 - Postlewaite and Vives (1987)
Literature

1. Multiple Equilibria, e.g., Diamond-Dybvig (1983)
 - Solvency Risk \approx Unique (Bad) Equilibrium
 - Illiquidity Risk \approx Selection of Bad Equilibrium

2. "Informational Selection": Compare informationally selected unique equilibrium with best complete information equilibrium
 - Postlewaite and Vives (1987)
 - "Global Games"
Global Games Literature: Some Early Papers 1

Morris-Shin (2004): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
Global Games Literature: Some Early Papers 1

Morris-Shin (2004): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
 - Absent (pure liquidity risk?)
Morris-Shin (2004): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
 - Absent (pure liquidity risk?)

2. Modelling Comments:
Global Games Literature: Some Early Papers 1

Morris-Shin (2004): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
 - Absent (pure liquidity risk?)

2. Modelling Comments:
 - Bare Bones "Regime Change Game"
Global Games Literature: Some Early Papers 1

Morris-Shin (2004): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
 - Absent (pure liquidity risk?)

2. Modelling Comments:
 - Bare Bones "Regime Change Game"

3. Focus
Morris-Shin (2004): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
 - Absent (pure liquidity risk?)

2. Modelling Comments:
 - Bare Bones "Regime Change Game"

3. Focus
 - Public Signals
Global Games Literature: Some Early Papers 2

Goldstein-Pauzner (2005): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
Goldstein-Pauzner (2005): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
 - Continuous Payoff, no solvency
Goldstein-Pauzner (2005): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
 - Continuous Payoff, no solvency
 - Could treat continuous payoff as proxy for insolvency risk
Goldstein-Pauzner (2005): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
 - Continuous Payoff, no solvency
 - Could treat continuous payoff as proxy for insolvency risk
 - Illiquidity risk would go away as noise went to zero
Goldstein-Pauzner (2005): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
 - Continuous Payoff, no solvency
 - Could treat continuous payoff as proxy for insolvency risk
 - Illiquidity risk would go away as noise went to zero

2. Modelling Comments
Goldstein-Pauzner (2005): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
 - Continuous Payoff, no solvency
 - Could treat continuous payoff as proxy for insolvency risk
 - Illiquidity risk would go away as noise went to zero

2. Modelling Comments
 - real bank run payoffs
Goldstein-Pauzner (2005): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
 - Continuous Payoff, no solvency
 - Could treat continuous payoff as proxy for insolvency risk
 - Illiquidity risk would go away as noise went to zero

2. Modelling Comments
 - real bank run payoffs

3. Focus:
Goldstein-Pauzner (2005): "Coordination Risk and Price of Debt"

1. Decomposition of Credit Risk:
 - Continuous Payoff, no solvency
 - Could treat continuous payoff as proxy for insolvency risk
 - Illiquidity risk would go away as noise went to zero

2. Modelling Comments
 - real bank run payoffs

3. Focus:
 - comparative statics of withdrawal penalty
Rochet and Vives (2004):

1. Decomposition of Credit Risk:
Rochet and Vives (2004):

1. Decomposition of Credit Risk:
 - focus on fire sale rather than illiquidity risk
Rochet and Vives (2004):

1. Decomposition of Credit Risk:
 - focus on fire sale rather than illiquidity risk

2. Modelling Comments:
Rochet and Vives (2004):

1. Decomposition of Credit Risk:
 - focus on fire sale rather than illiquidity risk

2. Modelling Comments:
 - balance sheet modelling
Rochet and Vives (2004):

1. Decomposition of Credit Risk:
 - focus on fire sale rather than illiquidity risk

2. Modelling Comments:
 - balance sheet modelling
 - restricted normal/normal framework
Rochet and Vives (2004):

1. Decomposition of Credit Risk:
 - focus on fire sale rather than illiquidity risk

2. Modelling Comments:
 - balance sheet modelling
 - restricted normal/normal framework

3. Focus:
Rochet and Vives (2004):

1. Decomposition of Credit Risk:
 - focus on fire sale rather than illiquidity risk

2. Modelling Comments:
 - balance sheet modelling
 - restricted normal/normal framework

3. Focus:
 - Modelling lender of last resort policy
Some "Recent" Papers

[this means since the first version of this one!]

- Vives (2014): does a decomposition of credit risk and comparative statics in normal normal framework otherwise like this one
Some "Recent" Papers

[this means since the first version of this one!]

- Vives (2014): does a decomposition of credit risk and comparative statics in normal normal framework otherwise like this one
Conclusion

- We have developed model based distinction between insolvency and illiquidity risk.
Conclusion

- We have developed model based distinction between insolvency and illiquidity risk
- Funding of financial institutions by ultra short term credit and lack of liquid assets on balance sheet have played role in crises
Conclusion

- We have developed model based distinction between insolvency and illiquidity risk.
- Funding of financial institutions by ultra short term credit and lack of liquid assets on balance sheet have played role in crises.
- Liquidity issues should be addressed; but we need to understand interaction between illiquidity and insolvency to do this.
- Uncertainty about returns effects liquidity risk as well as solvency risk.
Conclusion

- We have developed model based distinction between insolvency and illiquidity risk
- Funding of financial institutions by ultra short term credit and lack of liquid assets on balance sheet have played role in crises
- Liquidity issues should be addressed; but we need to understand interaction between illiquidity and insolvency to do this
- We offer guidance on when re-liquification may be as important as re-capitalization (and when it won’t)
We have developed model based distinction between insolvency and illiquidity risk.

Funding of financial institutions by ultra short term credit and lack of liquid assets on balance sheet have played role in crises.

Liquidity issues should be addressed; but we need to understand interaction between illiquidity and insolvency to do this.

We offer guidance on when re-liquification may be as important as re-capitalization (and when it won’t).

Uncertainty about returns effects liquidity risk as well as solvency risk.