International R&D Spillovers and Asset Prices

Federico Gavazzoni (INSEAD)
Ana Maria Santacreu (St. Louis Fed and INSEAD)

NYU Alumni Conference
May 2015

1The views of this presentation are my own and do not represent the views of the Federal Reserve Bank of St. Louis or the Federal Reserve System.
Motivation: The Facts

<table>
<thead>
<tr>
<th>Corr. with the U.S.</th>
<th>Consumption Growth</th>
<th>Stock market</th>
<th>FX Depr. Volatility</th>
<th>FX Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>0.39</td>
<td>0.72</td>
<td>9.58</td>
<td>3.52</td>
</tr>
<tr>
<td>Canada</td>
<td>0.44</td>
<td>0.77</td>
<td>4.81</td>
<td>0.41</td>
</tr>
<tr>
<td>Germany</td>
<td>0.12</td>
<td>0.76</td>
<td>9.14</td>
<td>-3.60</td>
</tr>
<tr>
<td>Japan</td>
<td>0.15</td>
<td>0.55</td>
<td>9.95</td>
<td>-6.46</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0.14</td>
<td>0.60</td>
<td>10.01</td>
<td>6.30</td>
</tr>
<tr>
<td>Norway</td>
<td>0.08</td>
<td>0.48</td>
<td>8.81</td>
<td>0.75</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.32</td>
<td>0.46</td>
<td>9.39</td>
<td>1.24</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.09</td>
<td>0.63</td>
<td>9.37</td>
<td>-4.96</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.49</td>
<td>0.86</td>
<td>8.33</td>
<td>3.86</td>
</tr>
<tr>
<td>Mean</td>
<td>0.25</td>
<td>0.65</td>
<td>8.82</td>
<td>0.12</td>
</tr>
<tr>
<td>Volatility</td>
<td>0.16</td>
<td>0.14</td>
<td>1.59</td>
<td>4.31</td>
</tr>
</tbody>
</table>
Motivation

- With complete financial markets (in logs)

\[\Delta q_{t+1} = m^*_{t+1} - m_{t+1} \]

- FX depreciation rate = Foreign SDF - Home SDF

- Puzzle: Take variance of both sides
 - Data says \(\sigma(\Delta q) \approx 10\% \), \(\sigma(m^*) \approx 50\% \), \(\sigma(m) \approx 50\% \)
 - It must be that \(corr(m^*, m) \) is positive and large

- With standard time additive CRRA preferences \(m^i \propto \Delta c^i \), but consumption growth has low correlation across countries (Brandt, Cochrane and Santa-Clara (2004))
Finance Literature

- Colacito-Croce (2011): ∃ a common component \(x \) in SDF that drives up \(\text{corr}(m^*, m) \)
 - It has to be:
 - Highly autocorrelated within the country (Bansal and Yaron (2004))
 - Highly correlated across countries (Colacito and Croce (2011))
 - Must matter a lot for assets prices and little for quantities

\[\implies \text{Must move away from standard preferences} \]
What is \(x \)?

- Kung-Schmidt (2013) ➞ In a **closed economy**, \(x \) is driven by endogenous R&D (Romer (1990), Comin and Gertler (2006), Comin, Gertler and Santacreu (2011))

- Gavazzoni-Santacreu (2015) ➞ Endogenous growth through innovation (R&D) and its international spillovers (**through trade in varieties**) with recursive preferences affects the joint dynamics of asset prices and quantities

 Idea:

 - Asset prices reflect anticipation of future growth within countries
 - Joint dynamics of international asset prices depend on how future growth spreads worldwide
R&D Spillovers Literature

- R&D Spillovers and multinationals (Ramondo (2009), Guadalupe, Kuzmina, and Thomas (2010), Monge-Naranjo (2012))

- R&D Spillovers and networks (Cai and Li (2012))
International Trade and Stock Market Correlation

Stock Market Returns Correlations with Trade Variables

- Trade Intensity (1985-2009)
- Intensive Margin of Trade (1985-2009)
- Extensive Margin of Trade (1985-2009)
International Trade and FX Volatility

Exchange Rate Volatility with Trade Variables

![Graphs showing exchange rate volatility with trade variables.](image)
Our Paper

- **Theoretical:** Build a general equilibrium model that captures the relation between asset prices and international R&D spillovers

- **Empirical:**
 - Show in the data the relationship between asset prices, R&D and international trade
 - Empirical validity of our mechanisms: Predictability regressions
THE MODEL
The Model

- Two-country \(\{d, f\} \), symmetric production economy
- One representative consumer per country, recursive preferences
- Endogenous growth through R&D
- International R&D spillovers through trade in varieties: international adoption
- Complete financial markets
Preferences

Recursive Preferences:

\[U_{d,t} = \left\{ (1 - \beta)C_{d,t}^{\theta} + \beta \left(E_t \left(U_{d,t+1}^{1-\gamma} \right) \right)^{\frac{\theta}{1-\gamma}} \right\}^{\frac{1}{\theta}} \]

\(\gamma \) is CRRA, \(\psi \equiv \frac{1}{1-\theta} \) is IES (when \(\psi > 1/\gamma \), agents fear variation in \(U_{t+1} \))

\[M_{d,t+1} = \beta \left(\frac{C_{d,t+1}}{C_{d,t}} \right)^{\theta - 1} \left(\frac{U_{d,t+1}}{E_t(U_{d,t+1})^{1-\gamma}} \right)^{1-\gamma-\theta} \]
Final Producers

\[Y_{d,t} = \left(K_{d,t}^\alpha (\Omega_{d,t} L_{d,t})^{(1-\alpha)} \right)^{(1-\xi)} G_{d,t}^\xi \]

\[G_{d,t} = \left[N_{d,t}^d (X_{d,t})^\nu + N_{f,t}^d (X_{f,t})^\nu \right]^{\frac{1}{\nu}} \]

with \(\alpha \in (0, 1), \xi \in (0, 1), \) and \(\nu > 1. \) The shock \(\log(\Omega_{d,t}) \) is AR(1)
Intermediate Producers

- Monopolistic competitive firms
- Use final output with a CRS technology
- Iceberg transport costs: τ
- Set prices as a constant mark-up over the marginal cost
Innovation

- Innovators invest resources (final output) to introduce new prototypes of a product
- Value of a prototype to innovator:

\[V_{d,t} = \Pi_{d,t} + (1 - \phi) E_t[M_{d,t+1} V_{d,t+1}] \]

where \(\phi \) is the exogenous probability that a new variety becomes obsolete
- Law of motion:

\[N_{d,t+1}^d = \vartheta_{d,t} S_{d,t} + (1 - \phi) N_{d,t}^d \]

R&D expenditure

with \(\vartheta_{d,t} = \frac{\chi N_{d,t}^d}{S_{d,t}^{1-\eta} (N_{d,t}^d)^\eta} \)
- Free entry: \(1/\vartheta_{d,t} = E_t(M_{d,t+1} V_{d,t+1}) \)
International R&D Spillovers

\[N_{f,t+1}^d = \theta_f^d (1 - \phi)(N_{f,t}^d - N_{f,t}^d) + (1 - \phi)N_{f,t}^d \]
Quantities: Aggregate Productivity

- We can write the production function as:

\[Y_{d,t} = K_{d,t}^\alpha (Z_{d,t} L_{d,t})^{1-\alpha} \]

where

\[\log Z_{d,t} = \log \Omega_{d,t} + \log \left\{ (\bar{A})^{\frac{1}{1-\alpha}} \left[N_{d,t}^d + (\tau Q_t)^{\frac{v}{v-1}} N_{f,t}^d \right] \right\} . \]

- TFP comes from:
 - Exogenous growth: \(\log \Omega_{d,t} \)
 - Endogenous growth:
 - Domestic R&D
 - Adoption of foreign R&D
Asset prices: Stock Market

\[Q_{d,t} = \text{Value of installed capital (} K_{d,t} \text{)} + \]
\[\text{Value of already invented technologies (used or not used abroad)} + \]
\[\text{Value of future domestic R&D} + \]
\[\text{Value of future domestic R&D (potentially sold abroad)} \]

- Last two terms are highly correlated across countries:
 international long run risk through adoption
NUMERICAL EXERCISE
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Lower Spillover</th>
<th>Higher Spillover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Aversion</td>
<td>γ</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>IES</td>
<td>ψ</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Subjective Discount Factor</td>
<td>β</td>
<td>$0.984^{1/4}$</td>
<td></td>
</tr>
<tr>
<td>Capital Share</td>
<td>α</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Share of Materials</td>
<td>ζ</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Autocorrelation of Ω</td>
<td>ρ_a</td>
<td>$0.95^{1/4}$</td>
<td></td>
</tr>
<tr>
<td>Depreciation of capital stock</td>
<td>δ</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Scale Parameter</td>
<td>χ</td>
<td>0.4240</td>
<td></td>
</tr>
<tr>
<td>Innovation Obsolescence Rate</td>
<td>ϕ</td>
<td>0.0375</td>
<td></td>
</tr>
<tr>
<td>Elasticity of Innovation wrt R&D</td>
<td>η</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Volatility of exogenous shock</td>
<td>σ</td>
<td>1.00%</td>
<td></td>
</tr>
<tr>
<td>Inverse Markup</td>
<td>ν</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Shipping Cost</td>
<td>τ</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>International Adoption Parameter</td>
<td>ϑ_d</td>
<td>0.015</td>
<td>0.025</td>
</tr>
</tbody>
</table>
Numerical exercise: Results

<table>
<thead>
<tr>
<th>Moment</th>
<th>Lower Spillover</th>
<th>Higher Spillover</th>
<th>CRRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(\Delta c)$</td>
<td>1.67</td>
<td>1.62</td>
<td>1.97</td>
</tr>
<tr>
<td>$ACF_1(\mathbb{E}t \Delta z{t+1})$</td>
<td>0.9832</td>
<td>0.9838</td>
<td>0.963</td>
</tr>
<tr>
<td>$ACF_1(\mathbb{E}t \Delta c{t+1})$</td>
<td>0.9865</td>
<td>0.9869</td>
<td>0.914</td>
</tr>
<tr>
<td>$\text{Corr}(\Delta c, \Delta c^*)$</td>
<td>0.2030</td>
<td>0.2800</td>
<td>0.980</td>
</tr>
<tr>
<td>$E(r_f)$</td>
<td>1.45</td>
<td>1.46</td>
<td>5.38</td>
</tr>
<tr>
<td>$E(r_m - r_f)$</td>
<td>2.80</td>
<td>2.91</td>
<td>6.00</td>
</tr>
<tr>
<td>$\sigma(r_m - r_f)$</td>
<td>11.0</td>
<td>12.0</td>
<td>8.20</td>
</tr>
<tr>
<td>$\text{Corr}(r_f, r_f^*)$</td>
<td>0.708</td>
<td>0.850</td>
<td>0.850</td>
</tr>
<tr>
<td>$\text{Corr}(r_m - r_f, r_m^* - r_f^*)$</td>
<td>0.823</td>
<td>0.859</td>
<td>-0.786</td>
</tr>
<tr>
<td>$\sigma(\Delta q)$</td>
<td>7.00</td>
<td>5.88</td>
<td>12.0</td>
</tr>
</tbody>
</table>
Numerical exercise: The importance of the mechanism

<table>
<thead>
<tr>
<th>Moment</th>
<th>Exo R&D (no adopt.)</th>
<th>Endo R&D (no adopt.)</th>
<th>Exo R&D (no adopt.)</th>
<th>CRRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Corr}(\Delta c, \Delta c^*)$</td>
<td>0.043</td>
<td>-0.008</td>
<td>-0.008</td>
<td>0.980</td>
</tr>
<tr>
<td>$\text{Corr}(r_m - r_f, r_m^* - r_f^*)$</td>
<td>0.014</td>
<td>0.779</td>
<td>0.011</td>
<td>-0.786</td>
</tr>
<tr>
<td>$\sigma(\Delta q)$</td>
<td>9.62</td>
<td>26.2</td>
<td>11.2</td>
<td>12.0</td>
</tr>
</tbody>
</table>
Conclusion

- Hard to reconcile dynamics of quantities and asset prices

- New empirical findings:
 - **Positive** correlation between stock market returns correlation and:
 - bilateral R&D intensity
 - the extensive margin of trade
 - **Negative** correlation between FX volatility:
 - and bilateral R&D intensity
 - the extensive margin of trade

- An endogenous growth model with international R&D spillovers rationalizes these findings

- Next:
 - Empirical validity of the mechanism through predictability tests
The Mechanism

\[\Omega_{d,t} \uparrow \Rightarrow TFP_{d,t}^{EXO} \uparrow \]

- Domestic final good producers demand:
 - 1. More domestic varieties: \(TFP_{d,t}^{ENDO} \uparrow \). With international adoption, \(TFP_{f,t+1}^{ENDO} \uparrow \).
 - 2. More foreign varieties: \(TFP_{f,t}^{ENDO} \uparrow \). With international adoption, \(TFP_{d,t+1}^{ENDO} \uparrow \).

- **Result:** Expected TFP’s are positively autocorrelated (endogenous growth) and positively correlated across countries (international adoption):
 - Mild effect on quantities.
 - Strong effect on asset prices (through EZ preferences).